Testing Rank of Incomplete Unimodal Matrices
نویسندگان
چکیده
Several statistics-based detectors, based on unimodal matrix models, for determining the number of sources in a field are designed. A new variance ratio statistic is proposed, and its asymptotic distribution analyzed. The detector shown to outperform alternatives. It that further improvements achievable via optimally selected rotations. Numerical experiments demonstrate performance gains our detection methods over baseline approach.
منابع مشابه
On higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملTesting equality of covariance matrices when data are incomplete
In the statistics literature, a number of procedures have been proposed for testing equality of several groups’ covariance matrices when data are complete, but this problem has not been considered for incomplete data in a general setting. This paper proposes statistical tests for equality of covariance matrices when data are missing. AWald test (denoted by T1), a likelihood ratio test (LRT) (de...
متن کاملSome rank equalities for finitely many tripotent matrices
A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations. Moreover, by using this equality and Theorems 8 and 10 in [Chen M. and et al. On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications, The Scientific World Journal 2014 (2014), Article ID 702413, 7 page...
متن کاملRecovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations
Many applications arising in a variety of fields can be well illustrated by the task of recovering the low-rank and sparse components of a given matrix. Recently, it is discovered that this NP-hard task can be well accomplished, both theoretically and numerically, via heuristically solving a convex relaxation problem where the widely-acknowledged nuclear norm and l1 norm are utilized to induce ...
متن کاملQuantized Rank R Matrices
First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as certain quantized factor algebras M q (n) of Mq(n) are analyzed. For r = 1, . . . , n − 1, M q (n) is the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r+1)×(r+1) quantum subdeterminants and a certai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2021
ISSN: ['1558-2361', '1070-9908']
DOI: https://doi.org/10.1109/lsp.2021.3070524